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Abstract 

To investigate the extent of genetic stratification in structured microbial 

communities, we compared the metagenomes of 10 successive layers of a 30 

phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found 

pronounced millimeter-scale genetic gradients that are consistent with the 

physicochemical profile of the mat. Despite these gradients, all layers displayed near 

identical and acid-shifted isoelectric point profiles due to a molecular convergence 

of amino acid usage indicating that hypersalinity enforces an overriding selective 35 

pressure on the mat community. 

 Introduction 

Ecosystems often exhibit distinct gradients. Physicochemical gradients have long 

been documented, but only recently has environmental shotgun sequencing allowed the 

associated functional (gene-based) gradients of an ecosystems biota to be addressed. 40 

Macroscale functional gradients have been inferred from oceanic metagenomic datasets, 

both horizontally (Johnson et al, 2006; Rusch et al, 2007; Venter et al, 2004) and 

vertically (DeLong et al, 2006). Many structured microbial communities have been 

shown to produce steep physicochemical gradients on the scale of millimeters (Jorgensen 

et al, 1979; Ley et al, 2006; Ludemann et al, 2000; Schmitt-Wagner and Brune, 1999), 45 

but associated community-level functional gradients have not been demonstrated to date.  

Here, we investigate a complex, stratified, hypersaline microbial mat from 

Guerrero Negro, Baja California Sur, Mexico as a model for fine-scale functional 

variation (Ley et al, 2006). The dense, tofu-like texture of this mat allows intact cross-
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sections to be obtained down to ~1 mm thickness. The mat shows pronounced 50 

physicochemical variation both in space and time: oxygen is detected routinely in the top 

2 millimeters during the day (up to 700 μM), and the mat is completely anoxic during the 

night. The permanently anoxic lower layers are characterized by μM sulfide levels 

increasing with depth. The mat, dominated by bacteria, was reported to be one of the 

world’s richest and most diverse microbial communities, comprising at least 752 55 

observed species from 42 bacterial phyla, including 15 novel candidate phyla (Ley et al, 

2006). Since the mat grows in hypersaline waters (~3X the salinity of seawater), we were 

also interested to look for evidence of molecular adaptations to hypersalinity in the mat 

community. 

  60 

Results and Discussion 

To investigate millimeter-scale genetic and associated functional stratification, we 

performed a metagenomic analysis of 10 spatially successive layers of the Guerrero 

Negro mat. Mat core samples were collected during the day (Table S1) and upper layers 

were sectioned at a finer scale (1 mm slices) than the lower layers (4 to 15 mm slices) to 65 

capture variation associated with the steep oxygen gradient in the upper millimeters of 

the mat (Table S2). DNA from each layer was cloned and shotgun-sequenced using 

capillary sequencing with an average of ~13,000 reads per layer. No significant assembly 

of the reads was possible, even when all data were combined (largest contig was 8.4 kb 

from a combined assembly). We chose therefore to analyze only the unassembled data 70 

(average trimmed (Chou and Holmes, 2001) read length 808 bp) to avoid chimerism that 

has been reported to be frequent in contigs <10 kb (Mavromatis et al, 2007). Genes were 
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predicted on vector and quality-trimmed reads with fgenesb (http://www.softberry.com/) 

using a generic bacterial model, resulting in an average of 13,600 genes per layer (Table 

S2). These data are available through the IMG/M system (Markowitz et al, 2006) at 75 

http://durian.jgi-psf.org/cgi-bin/img_mi_v240/main.cgi (username/password: 

public/public). 

Using both bulk similarity matches and phylogenetic mapping of conserved 

marker genes (von Mering et al, 2007a), we found strong phylogenetic variation between 

layers. Cyanobacteria and Alphaproteobacteria were the most abundant lineages in the 80 

top two layers (Fig. S1). Below the upper 2 mm, Proteobacteria, Bacteroidetes, 

Chloroflexi and Planctomycetes were the most represented phyla, with a notable peak in 

Bacteroidetes at 3 mm (Fig. S1). Numerous traces of other bacterial phyla as well as 

some archaea and eukaryotes were also identified. A large fraction of predicted proteins 

in layers below 2 mm did not have significant sequence similarity to any protein in public 85 

databases, reflecting the high degree of phylum-level novelty in the mat community (Ley 

et al, 2006). These metagenome-based findings are in broad agreement with single 

marker gene surveys of the mat (Ley et al, 2006; Spear et al, 2003). 

A rough measure of functional potential per organism can be made by estimating 

the average effective genome size (EGS) (Raes et al, 2007). Using this method, we 90 

predicted an increased average bacterial genome size at the border of the oxic and anoxic 

zone (1-2 mm depth); 6 Mb at the border vs 3-3.5 Mb for the rest of the mat (Fig. S2). 

This may reflect an increased functional complexity needed for survival in the constantly 

fluctuating conditions at this depth as was recently observed in the genome of a marine 

Beggiotoa occupying a similar niche (Mussmann et al, 2007) .  95 
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To investigate genetic gradients through the mat, we determined the relative 

abundances of individual gene families and metabolic pathways between mat layers, and 

compared the mat data to external datasets for reference. Many gene families were highly 

abundant in the mat despite high overall functional diversity (Fig. S3) and very low 

sequence coverage of individual species. Indeed, the mat dataset roughly doubled 100 

existing inventories for some of the gene families described below (Table 1). This implies 

that multiple species and likely higher-level taxa contribute representatives of these 

families, and suggests that there has been strong selection for a limited number of 

common functionalities in the mat. 

The key aspect of this study was to use the metagenomic data to determine what, 105 

if any, millimeter-scale genetic gradients are detectable in this very complex and 

structured ecosystem. Several gene families and pathways either directly (Fig. 1A) or 

inversely (Fig. 1B) tracked the steep oxygen gradient in the top 2 mm of the mat and 

sulfide gradient below 2 mm. Genes directly involved in photosynthesis (KEGG map 

00195) were statistically overrepresented in the top two layers relative to lower layers. In 110 

addition, an uncharacterized protein domain (pfam05685) highly paralogous in 

phototrophic lineages (most cyanobacterial and some Chloroflexi genomes) showed a 

steep declining gradient in the top 6 mm (Fig. 1A) consistent with dominance of 

phototrophs in the same region. Chaperones similarly tracked the oxygen gradient when 

all gene families with chaperone activity are combined together. The over-representation 115 

of chaperones in the top 2 mm relative to the rest of the mat may not be associated with 

oxygen concentration, but rather with heat stress caused by direct exposure to sunlight.  
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Gene families and pathways that tracked inversely with oxygen concentration 

included ferredoxins, trimethylamine methyltransferase (Mttb), sulfatases and sugar 

degradation pathways (Fig. 1B). Ferredoxins and associated proteins show a four fold 120 

increase from the top layer down to a depth of 4 mm and thereafter are uniformly over-

represented. Two COG families are chiefly responsible for this trend: COG1148 

(heterodisulfide reductase, subunit A and related polyferredoxins) and COG2414 

(Aldehyde:ferredoxin oxidoreductase). The expansion of ferredoxins in the anoxic layers 

likely reflects the diversification of redox reactions required for anaerobic respiration. 125 

Mttb (pfam06253, COG5598) methyltransferase does not become significantly over-

represented until at least 7 mm into the mat (Fig. 1B), well below the anoxic boundary. 

Mttb was initially identified as a protein facilitating the first step of methanogenesis from 

trimethylamine in Methanosarcinaceae (Paul et al, 2000). However, this gene family is 

also found in methylotrophic bacteria (e.g. in Rhodobacteraceae and Rhizobiaceae), 130 

suggesting a more generalized role in C1 metabolism.  

One of the most pronounced inverse gradients is observed for sulfatases 

(COG3119) that are involved in hydrolysis of sulfated organic compounds (Fig. 1B). 

Since sulfatases can function in the presence of oxygen, the gradient is presumably a 

reflection of availability of sulfated compounds in the mat. While the concentration 135 

gradient of sulfated compounds is not known in the mat, they are produced by 

phototrophs (Kates, 1986) and are widespread in marine environments (Glockner et al, 

2003). Sulfatase genes obtained from the mat exhibited extensive sequence divergence 

suggesting that a corresponding wide variety of sulfated organic substrates are present in 

the mat with the highest concentrations below 2 mm. The over-representation of this gene 140 
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family may in part be due to an expansion of sulfatase genes in the genomes of 

planctomycetes, suggested to be involved particularly in hydrolysis of sulfated 

glycopolymers (Glockner et al, 2003).  

Sugar degradation pathways (glycolysis, pentose and uronic acid degradation) 

show a two-fold increase with depth through the top 3 mm and maintain high relative 145 

representation in the anoxic lower layers (Fig. 1B). This suggests that heterotrophic 

metabolism of sugars, particularly pentoses and uronic acids, is important in the lower 

layers.  

Organisms living at the boundary between the oxic and anoxic zones could 

potentially accumulate substrates with high reductive potential in the anoxic zone, and 150 

then move to the oxic zone to harvest this potential by oxidation (Mussmann et al, 2007). 

This would require boundary zone organisms to be motile and chemotactic. Indeed, we 

find that chemotaxis signature genes peak sharply at the oxic-anoxic boundary (Fig. 1C). 

Flagella appear not to be the dominant source of motility in these chemotactic organisms 

as flagellar genes actually dip in this region (Fig. 1C). Chemotactic gliding bacteria have 155 

been observed in fresh mat cores (Garcia-Pichel et al, 1994; Kruschel and Castenholz, 

1998) and our molecular data suggest they are most abundant in the boundary zone, 

bridging the oxic and anoxic layers.  

Despite the pronounced phylogenetic and functional gradients in the mat, 

hypersalinity is a selective pressure common to the whole community. A known 160 

adaptation to hypersalinity is enrichment of proteins with acidic amino acids allowing 

proteins to function in high cytoplasmic salt concentrations (Soppa, 2006). The resulting 

acid-shifted protein isoelectric points have been documented in the genomes of only two 
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lineages, the archaeal class Halobacteria (Kennedy et al, 2001; Soppa, 2006) and the 

bacterial species Salinibacter ruber (Mongodin et al, 2005; Oren and Mana, 2002), so it 165 

is unclear how widespread this mechanism is in halophilic communities. 

The average isoelectric points of the mat layer communities are conspicuously 

acid-shifted compared to most bacteria and microbiomes that are non-halophilic (Fig. 

2A). We determined this to be due primarily to an enrichment in the acidic amino acid, 

aspartate (Fig. 2B). Furthermore, the isoelectric profiles of all 10 layers converge on a 170 

common acid-shifted profile (Fig. 3A) despite a significant variation in GC content 

between layers (Fig. 3B), reflecting differing phylogenetic composition. The latter is 

consistent with aspartate usage being GC-independent since it can be encoded by both 

GC-rich and -poor codons (GAC and GAT respectively). As each metagenomic read pair 

likely is derived from different species and no single species dominates the mat 175 

community, we conclude that a significant fraction of the community has converged on 

the enrichment of low isoelectric point proteins. 

In summary, this study demonstrates that millimeter-scale genetic gradients can 

be readily discerned through a vertical cross-section of a highly structured and complex 

microbial community using low sequence coverage. Further, we could directly and 180 

inversely correlate many of the genetic gradients to the physicochemical profile of the 

mat. Microbial biofilms are important in many habitats, including our own bodies 

(Eckburg et al, 2005; Kroes et al, 1999) and often display physicochemical gradients at 

mm to cm scales. However few biofilms are as robust as microbial mats and methods 

may need to be adapted to preserve spatial structure (Webster et al, 2006) and allow the 185 

relevant fine-scale genetic gradients to be resolved. 
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Surprisingly, we found that adaptation to hypersalinity by enriching proteins with 

acidic amino acids is more widespread than previously appreciated. While this is the first 

example of species-independent molecular convergence in a microbial community, we 

predict that similar convergence patterns will be observed in other communities adapted 190 

to similar or different environmental conditions, such as temperature (Gianese et al, 

2001) or pressure (Lauro and Bartlett, 2008; Simonato et al, 2006). 

Methods 

Mat core samples were collected around 2 pm from pond 4 near 5 at the Exportadora de 

Sal Saltworks, Guerrero Negro, Baja California Sur, Mexico. The salinity of the bulk 195 

water above the mat was ~9% (~3X the salinity of seawater). Other metadata for the 

sample can be found in Table S1. Four replicate cores were collected, sectioned into 

layers with sterile scalpals and DNA extracted, normalized, pooled and sequenced as 

described in Supporting Information.  

Community composition analysis was performed using the consensus of i) best 200 

BlastP hits (Altschul et al, 1997) to the IMG/M database (Markowitz et al, 2006)  and ii) 

phylogenetic mapping of signature genes on a phylogenetic tree (von Mering et al, 

2007a). See Supporting Information for details. 

Gene-based functional gradients were calculated as follows: genes were assigned 

to their COG families (Tatusov et al, 1997) and pfam domains (Bateman et al, 2002) 205 

based on rpsBLAST (Altschul et al, 1997). The gradients were examined for possible 

over-representation of groups or individual families or domains, and 1000 bootstrap 

iterations were used to assess the significance of over-representation. The described 

gradients were independently confirmed using two databases; IMG/M (Markowitz et al, 
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2006) and the STRING database (von Mering et al, 2007b). Further details, as well as 210 

groupings of families/domains are described in Supporting Information. 

Isoelectric point distributions, amino acid composition, and GC content were 

computed using appropriate perl scripts and modules as described in Supporting 

Information. 

 215 
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Figure legends 

Figure 1. Gradients of gene families or groups of functionally-related gene families 395 

enriched in the oxic zone (A), anoxic (high H2S) zone (B) and varying across the oxic-

anoxic border (low H2S) zone (C). Relative abundance is normalized by average number 

of genes in a layer. In most cases, these genes and groups of genes were over-represented 

relative to other metagenomic datasets (Table 1). Error bars denote standard deviations 

calculated from 1000 bootstrap resamplings of predicted proteins, and points with non-400 

overlapping error bars are treated as significantly different. Lists of gene families used in 

each group (Photosynthesis-related proteins, Chaperones, Ferredoxins and associated 

proteins, Sugar degradation pathways, Chemotaxis and Flagella), as well as details of the 

resampling procedure are given in Supporting Information. 

 405 

Figure 2. Average isoelectric point (A) and aspartate content (B) of all predicted proteins 

in the mat layer communities and reference bacteria, archaea, phages and microbiomes 

available through IMG/M (Markowitz et al, 2006). Genomic average was computed for 

each genome or microbiome, with 10 layers of the mat treated separately. These values 

were rounded up to the next (larger value) bin in increments of 0.2 and 0.5 in (A) and (B) 410 

respectively, and the distribution of the bins plotted as a fraction of each dataset.  

 

Figure 3. Isoelectric point profiles of predicted proteins (A) and GC content profiles of 

reads (B) for mat layer communities. In A, isoelectric point profiles for selected reference 

genomes are added to highlight the highly overlapping and acid-shifted mat layer 415 

profiles.
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Table 1. Most prominent gene families and domains in the Guerrero Negro hypersaline mat core relative to other sequenced 

microbiome samplesa. Numbers represent raw counts and numbers in parentheses are normalized for mat dataset size.  

 

Gene family 

or domainb 

Annotation Mat AMD Soil  Whalefall Gutless Worm Sludge  IMG 

COG3119  Arylsulfatase A and related enzymes  640 (640) 0 195 (145) 46 (165) 16 (77) 32 (127) 1154 (55) 

COG5598  Trimethylamine:corrinoid methyltransferase  112 (112) 0 16 (12) 5 (18) 52 (249) 3 (12) 114 (5) 

COG1148  Heterodisulfide reductase, subunit A and 

related polyferredoxins  

172 (172) 0 16 (12) 5 (18) 40 (192) 0 185 (9) 

COG2414  Aldehyde:ferredoxin oxidoreductase 110 (110) 0 20 (15) 4 (14) 39 (187) 5 (20) 225 (11) 

Pfam05685  DUF820 domain 142(142) 3 (32) 63 (47) 0 8 (38) 10 (40) 825 (40) 

 420 

a. Mat (combined data from all layers, present study), AMD (acid mine drainage biofilm (Tyson et al, 2004)), soil (Tringe et al, 2005), whalefall 

(sample 3 (Tringe et al, 2005)), gutless worm (Woyke et al, 2006), sludge (US, (Garcia Martin et al, 2006)), IMG (version 2.20, combined data 

from 728 microbial genomes (Markowitz et al, 2006)). 

b. COG - cluster of orthologous genes (Tatusov et al, 1997), pfam (Bateman et al, 2002)  

 425 
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Sample preparation and sequencing 

A sample of hypersaline mat was collected ~100 m off-shore around 2 pm from pond 4 

near 5 at the Exportadora de Sal Saltworks, Guerrero Negro, Baja California Sur Mexico 

(Ley et al, 2006) by JS (Table S1).  The 25 x 25 cm x 6 cm mat piece was brought to 35 

shore in a pan of its own water. Four replicate 6 cm thick x 8 mm diameter cores were 

excised from the middle of the mat sample using a sterile coring instrument. Each core 

was sectioned into coins as described in Table S2 using sterile scalpal blades for each 

layer. The mat is vertically striated and these striations were used to ensure that coins 

were obtained from the same layer of each replicate core. Coins were frozen on liquid 40 

nitrogen. DNA was extracted by bead-beating (Ley et al, 2006) from individual sub-

samples (~10 mg) of each mat slice. DNA for each of the 23 sections was extracted from 

duplicate sub-samples of each corresponding layer of each core, and combined. The 

average DNA yield per layer was ~3.6 μg DNA / mg of mat.  

 45 

Table S1. Metadata for Guerrero Negro hypersaline mat sample used in this study.  

Parameter Value 

Collection date 13 Feb 2005 

Collection time ~2 pm 

GPS coodinates N27 41.345 W113 55.027 

Ambient temperature 15˚C 

pH 6 to 9 (varies diurnally and through layers) 

Sampling depth ~ 1 m below water level 

Salinity of bulk water 90 ppt 

Sulfate concentration of bulk water 80 mM 
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Table S2. Data collection, sequencing and gene calling summary.  

Layer  
# 

Depth  
(mm) 

Average 
depth (mm) 

Pooled 
coins 

Reads 
# 

Bases 
# 

Genes 
# 

1 0-1 0.5  12218 8596350 13422  
2 1-2 1.5  11574 7469572 12210  
3 2-3 2.5  12419 8286576 13385  
4 3-4 3.5  12824 8215056 13388  
5 4-5 4.5  15663 9803980 16093  
6 5-6 5.5  12531 8377132 13534  
7 6-10 8 4x1mm 15060 9864533 16079  
8 10-22 16 4x3mm 12693 8017278 13217  
9 22-34 28 4x3mm 12528 8382678 13855  
10 34-49 41.5 5x3mm 11637 7240715 12135  

 

DNA for all selected layers was blunt-end ligated into pUC18 (3 kb) and end-50 

sequenced using capillary sequencing (see Table S2 for number of reads and bases per 

layer). Genes were predicted on vector and quality-trimmed reads with fgenesb using a 

generic bacterial model (http://www.softberry.com/), resulting in an average of 13,600 

genes per layer (Table S2). The data was loaded into the Integrated Microbial Genomes 

with Microbiome samples (IMG/M) system (Markowitz et al, 2006)  at http://durian.jgi-55 

psf.org/cgi-bin/img_mi_v240/main.cgi (username/password: public/public). In addition, 

the data was loaded into the STRING database (von Mering et al, 2007b).  

 

Community composition analysis 

We analyzed the phylogenetic content of the mat to confirm the previously observed 60 

community composition based on a 16S rRNA gene survey (Ley et al, 2006). The 

number of 16S rRNA gene sequences in the metagenomic dataset varied from 1 to 12 per 

layer and therefore did not provide sufficient information for statistically significant 

exploration of phylogenetic distribution in the mat. We therefore analyzed the 

phylogenetic distribution of predicted genes based on best BLAST hits of all genes 65 

(Markowitz et al, 2006) (FigS1a) and phylogenetic mapping of 31 marker genes against a 

reference concatenated gene tree which has been shown to be quantitative in complex 

samples of similar size (von Mering et al, 2007a) (Fig S1b). For the BLAST analysis, we 

assessed the distribution of best BLAST hits over 30% identity to phylogenetic groups in 

the IMG database. IMG was chosen because all proteins in this database belong to 70 
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sequenced taxonomically characterized microbial isolates facilitating phylogenetic 

assignment of mat sequences. The phylomapping uses Maximum Likelihood mapping of 

phylogenetically informative genes on the tree of life to estimate the diversity of the 

sample (von Mering et al, 2007a). Each layer was mapped to a tree of 191 known 

genomes (Ciccarelli et al, 2006). 75 

In the upper two layers, Cyanobacteria and Alphaproteobacteria were the most 

abundant major lineages, their abundance sharply decreasing with depth. This is 

consistent with the steep reduction in oxygen concentration and light intensity through 

the dense black-colored mat (Jorgensen and Des Marais, 1988). However, genes mapping 

to cyanobacteria were still readily detectable throughout the mat. Below the upper two 80 

layers, BLAST-based phylotyping was complicated by the fact that most reads had no 

significant similarity to existing isolate genomes consistent with the extreme 

phylogenetic diversity of the mat (Ley et al, 2006) and severely biased and undersampled 

reference microbial genome dataset. Of the reads that did have similarity to reference 

genomes, the Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria and 85 

Bacteroidetes were the most represented lineages throughout the mat. Other groups 

identified as predominant constituents in the mat by 16S survey, namely the Chloroflexi 

and Planctomycetes (Ley et al, 2006), were not well resolved by BLAST-based analysis 

due to a lack of reference genomes for these phyla. Below the two uppermost layers, 

phylomapping identified Alphaproteobacteria, Bacteroidetes, Chloroflexi and 90 

Planctomycetes as the most abundant lineages in the mat. In addition both analyses 

identified traces of other bacterial phyla as well as some Archaea and eukaryotes. 

Overall, our findings are in agreement with previous phylogenetic analyses of this mat 

(Ley et al, 2006; Spear et al, 2003), which found similar gross phylogenetic distribution 

patterns. 95 
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Figure S1. Phylogenetic characterization of the mat by layer. (A) Count of best hits by 

phylogenetic group using a 30% BLAST identity threshold against the IMG database. 

Only the most abundant phyla and proteobacterial classes are shown. Genes with hits 

below the threshold, or without any hits are unassigned. (B) Phylogenetic mapping of the 

10 mat layers on the Ciccarelli et al. tree. (Ciccarelli et al, 2006), only dominant groups 105 

are shown. Sequences were mapped using the method of (von Mering et al, 2007a). In 

short, for each sample, predicted proteins that belonged to a set of phylogenetic marker 

orthologous groups were aligned to a set of hand-curated alignments. From these 

alignments, metagenomic proteins were mapped to the reference tree using maximum 

likelihood (see (von Mering et al, 2007a) for details). For the broader groupings shown 110 

here, mappings for that subgroup were summed and the fraction of each group to the 

sample total was plotted. (C) Tree-based view of (B) enabling higher phylogenetic 

resolution of results. On the right, intensity map of mappings, with each column being a 

layer (ordered from left (top) to right (deepest). For each row (tree leaf), intensity was 

summed over the branches leading to the leaves (with equal partition on bifurcations) and 115 

was normalized over total (i.e. the darkest black is the largest number of mappings of 

*all* layers - not only that layer).  Colored bands (blue, red, yellow) indicate three 

chemical zones (oxic, lowH2S, highH2S). On the left, mappings as placed on the tree. 

Colored pie charts show precise mapping on branches (intensity map shows values 

summed over branches) - shades of blue, red, yellow indicate layers. Colors of branches 120 

indicate dominant layer for mappings on that branch. Normalized raw data for Fig. S1 are 

available as a linked file to the supporting information. 

 

Average genome size 

Using a method based on the fraction of single-copy marker genes (Raes et al, 2007), the 125 

average effective genome size (EGS) of organisms living in the mat was calculated. Two 

measurements were taken: 1) general EGS, which is measured from single-copy marker 

genes/nucleotide density and represents the average genome size over all organisms (incl. 

eukaryotes) accounting for multiple copies of plasmids and inserted sequences, as well as 

for associated phages and viruses, and 2) bacteria-specific EGS, which is measured from 130 
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the single-copy bacterial marker genes/all bacterial genes ratio and measures EGS 

specifically for the bacteria in the sample (see Figure S2). 

 

Figure S2: Effective genome size (EGS) general (blue) and bacteria-specific (red) per 135 

layer (x-axis) in Mb. 

 

All layers except layer 2 are statistically indistinguishable and converge on an average 

bacteria-specific EGS of about 3-3.5Mb, which is similar to that found for other mats 

(Acid Mine Drainage EGS = 3.2; Whalefalls = 3.5), but much smaller than soil 140 

(Minnesota sample = 4.7) and bigger than sea (Sargasso sample = 1.6). 

Interestingly, the EGS in layer 2 is significantly larger than in the other layers, 

both for the general and bacteria-specific measure. One could speculate that genomes in 

this layer are larger because of an expansion of the gene repertoire: this layer is probably 

the chemically most complex – strong O2 gradient, pH gradient and on the border of the 145 

oxic and H2S zone – which would necessitate an expansion to cope with a broad scale of 

environmental pressures. 
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Gene family coverage in mat 

To estimate how much of the functional space of each layer was sampled using the 150 

shotgun sequencing, reads were assigned to STRING (von Mering et al, 2007a) 

orthologous groups using a 60 bit cut-off as described in (Tringe et al, 2005). For each 

sample, reads were randomly selected without replacement and total number of assigned 

COGs per basepair sampled was determined and plotted (Fig S3). Coverage appears to be 

rather low, with none of the layer curves reaching saturation. Layers 1 and 2 seem to 155 

follow a different behavior, in line with the higher environmental variability and/or 

complexity of these layers. 

 

 

Figure S3. Collector’s curves for the 10 mat layers (numbered 1 to 10) and reference 160 

datasets: acid mine drainage (Tyson et al, 2004), Sargasso sea (Venter et al, 2004) and 

soil (Tringe et al, 2005). The figure shows a Lowess fit on 10 repetitions of each 

sampling run (smoothing factor 0.1 using the lowess function in the R package (www.r-

project.org)). 

165 
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Gene-based functional gradients 165 

The identification of COG families and pfam profiles was based on the IMG/M 

(Markowitz et al, 2006) database, using a cut-off of 20% identity and e-value 0.01. Gene 

family gradients were initially identified using the find functions and abundance profile 

tools in IMG/M. Groups of protein families were created by manually including all the 

possible protein families that have the function of interest while excluding protein 170 

families that are known to include proteins with alternative functions or participate in 

other pathways. For example, if a protein family was only known to participate in 

methylation associated with chemotaxis, it was included in the chemotaxis category, 

while a protein family that can do methylation either associated or not associated with 

chemotaxis was excluded. 175 

The significance of the observed gradients was estimated by 1,000 bootstrap 

samplings of predicted proteins as follows. In each bootstrap iteration of proteome sized 

N, N predicted proteins were selected randomly from the dataset, with multiple samplings 

of the same protein allowed. In this bootstrapped dataset the number of occurrences of the 

protein family (or group of protein families) of interest was recorded. After 1,000 180 

bootstrap iterations, an array of 1,000 observations was created. A standard deviation was 

computed from this array using Math::NumberCruncher perl module to provide 

confidence estimates for datapoints in Figure 1. Values on the graph with non-

overlapping standard deviations were considered as significantly different. See main text 

for results and discussion.  185 

Gradients were independently verified using the STRING database (version 7.0; 

(von Mering et al, 2007b)) as follows. Proteins with a BLAST bit score>60 were mapped 

onto COGs, operons and KEGG maps using the same procedure as in (Tringe et al, 

2005). To detect gradients, the following combinations of pooled layers were tested for 

significant (e-val<0.05) overrepresentation of COGs, operons and KEGG maps (Tringe et 190 

al, 2005) (Tringe et al.) in either pool: Oxic (layers 1,2) vs. low H2S (layers 3,4,5,6) vs. 

high H2S (layers 7,8,9,10); Oxic vs. low+highH2S , top half of layers (1-5) vs. bottom 

half (6-10). Significant classes (below) were then checked manually to eliminate artifacts 

(e.g. incomplete KEGG maps) and/or provide more detailed explanations of observed 

trends (see main paper).  195 
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Component COGs or pfam domains of functional groups presented in Fig. 1.  

Ferredoxins and associated proteins 
COG0348, COG0633 COG0674, COG1013, COG1014, COG1018, COG1139, 
COG1141, COG1144, COG1146, COG1148, COG1149, COG2146, COG2414, 
COG2440, COG3411, COG4231, COG4739, COG4802 200 

 
Sugar degradation 
COG0149, COG0191, COG0205, COG3588, COG1312, COG1904, COG2160, 
COG2407, COG4806, COG2115, COG0524, COG1070, COG1082, COG0036, 
COG0800, COG2721, COG3717, COG3734, COG3954. 205 

  
Chaperones 
COG0071, COG0326, COG0443, COG0484, COG0501, COG0533, COG0542, 
COG0576, COG0606, COG1214, COG1281. 
 210 

Photosynthesis 
pfam03437, pfam05447, pfam07143, pfam02276, pfam06206, pfam06485, pfam07082, 
pfam05969, pfam05996, pfam03130, pfam01716, pfam00124, pfam03967, pfam02605, 
pfam00737, pfam02532, pfam01788, pfam02533, pfam02419, pfam02468, pfam01789, 
pfam01405, pfam03912, pfam06596, pfam06298, pfam00796, pfam01701, pfam00421, 215 

pfam05398, pfam02392. 
 

Chemotaxis 

COG0840, COG0643, COG2201, COG1352, COG0835. 

 220 

Flagella 

COG1157, COG1256, COG1261, COG1291, COG1298, COG1317, COG1334, 
COG1338, COG1344, COG1345, COG1360, COG1377, COG1419, COG1516, 
COG1536, COG1558, COG1580, COG1677, COG1681, COG1684, COG1705, 
COG1706, COG1749, COG1766, COG1815, COG1843, COG1868, COG1886, 225 

COG1987, COG2063, COG2874, COG2882. 
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Isoelectric point and amino acid composition 

Isoelectric point was calculated for each protein in the mat and reference genome or 

microbiome dataset (obtained from the IMG database version 2) using pICalculator from 

the Bio::Tools module of bioperl. The average isoelectric point was calculated from these 230 

data for each mat layer and reference dataset (Figure 1A). The mat layers had very close 

average isoelectric points ranging from 6.5 to 6.7, which is lower than the microbial 

average (7.3; Table S3). This is not an artifact of the metagenomic data, as other 

metagenomic datasets, some processed by an identical pipeline at JGI, are much closer to 

the microbial average.  235 

 

Table S3. Average isoelectric points of selected metagenomic projects. 

Sample Average isoelectric point 

1 6.50 
2 6.60 

3 6.69 
4 6.55 
5 6.56 
6 6.58 
7 6.57 
8 6.51 

9 6.52 

M
at

 la
ye

rs
 

10 6.55 
  
Whalefall Sample #1 6.95 
Whalefall Sample #2 6.98 
Whalefall Sample #3 7.12 
Sludge US 7.62 
Sludge Australian 7.35 
Olavius spp. symbionts 7.65 
Acid Mine Drainage 7.68 
Soil 7.74 
  
All microbial genomes 7.3 

 

We also plotted the isoelectric point (Fig. 3A) and GC content (Fig. 3B) profiles for each 

mat layer. Bacterial and archaeal isoelectric point profiles were described to be bimodal 240 

(Schwartz et al, 2001) with cytoplasmic proteins comprising the left (more acidic) peak 

and membrane proteins comprising the right (more basic) peak. Organisms with a salt-in 

strategy such as Salinibacter have acid shifted peaks with a higher ratio of low isoelectric 
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point (left) to high isoelectric point (right) peaks. The isoelectric point profiles for the mat 

are consistent with a high contribution of salt-in halophiles (Fig. 3A). Moreover, the 245 

profiles of the mat layers were almost identical despite variable GC content (Fig. 3). To 

identify why the mat protein isoelectric points were acid-shifted, we wrote a perl script to 

calculate the content of each amino acid in the mat proteins as compared to amino acid 

usage of reference microbes and microbiomes. The most striking difference was in the 

abundance of aspartate which is remarkably homogenous between mat layers and higher 250 

than most other bacteria, archaea and metagenomes (Fig. 2B). The usage of aspartate is 

not influenced by GC content since it can be encoded by both GC-rich and GC-poor 

codons consistent with the variable GC content between mat layers (Fig. 3B). The use of 

higher aspartate content in proteins to enhance their acidity has only been reported for 

salt-in halophilic archaea which do not feature prominently in the mat community.  255 

 We also investigated the dataset for genes associated with the salt-out strategy, i.e. 

genes encoding compatible solutes (Wood, 2007). Glycine betaine transporters 

(COG0834, COG0765, COG1126 COG1125, COG1174, COG1292, COG1732, 

COG2113, COG4175, COG4176) are present in the mat but occur in low numbers. 

Indeed, the same gene families and are present in higher abundance in other habitats, 260 

including soil and gutless worm symbionts (data not shown). Similarly, we found only 

traces of the ectoine synthesis pathway (pfam06339). While it is highly likely that the 

salt-out strategy is employed by mat halophiles, we have insufficient molecular data to 

discern gradients within the mat. There are several possible explanations for the low 

incidence of salt-out genetic traits; 1) coverage is too low to identify abundance gradients 265 

of these low copy number protein families, 2) there is no increased abundance of gene 

families, but increased expression of relevant proteins, 3) novel compatible solutes are 

used or 4) the salt-out strategy is simply not widely used by the Guerrero Negro mat 

community. 

 270 
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